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Many workers have theoretically and numerically studied Brownian motors �ratchet models� as models for
molecular motors for many years. Their studies have been mainly concerned about one-dimensional motion of
a particle or coupled particles experiencing spatially asymmetric interaction force. In this paper, we introduce
a coupled flashing ratchet model, that is, elastically coupled Brownian particles with their own easily advanc-
ing directions under the on-and-off �or occasional� influence of two-dimensional interaction force asymmetric
in the easily advancing direction of each particle. The dynamics of the model is investigated by computer
simulation and characteristic motion of the particles in the two-dimensional space is observed. Our model is
also studied as that for molecular motors in muscle contraction and the simulation results are compared with
those of in vitro biological experiments in motility assays of the molecular motors. We succeed in reproducing
the experimental results qualitatively with our model.
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I. INTRODUCTION

Brownian motors, especially “ratchet” models, have been
widely studied by many workers recently �1–5�. Theoreti-
cally, the ratchet models are quite interesting as an applica-
tion of stochastic processes to transport phenomena. Without
any directed force, these models realize transport with
mechanism completely different from those in standard di-
rectional motion. It is found that thermal noise, proper spa-
tially asymmetric interaction force, and energy injection
mechanism can produce the macroscopic motion of a particle
toward a particular direction which depends on the asymmet-
ric properties of the interaction force. The coupled “ratchet”
models where particles interact mutually have been also
studied recently from theoretical interest in the effects of
mutual interaction among particles on transport phenomena.
As an application of stochastic processes, some workers have
been studying the dynamical properties of the coupled
ratchet models �6�. Jülicher, Ajdari, and Prost �7� studied
rigidly coupled flashing ratchets, where each particle experi-
ences asymmetric interaction force on and off �at intervals�.
On the other hand, Csahók, Family, and Vicsek �8� investi-
gated a coupled rocking ratchet model, where not only the
spatially asymmetric force but also time-periodic external
force is applied to the system. The authors have been study-
ing energy efficiency of elastically coupled flashing ratchet
models �9,10�.

The ratchet models, which are other types of models to-
tally distinct from those in Refs. �11–13�, have been studied
also as models for molecular motors. Among the molecular
motors, acto-myosin motors are widely investigated for
muscle contraction, where two kinds of filaments, consisting
mainly of actin and myosin �protein� molecules, respectively,
play an important role �14,15�. It is considered that they slide
past each other using energy of ATP �adenosine triphosphate�
hydrolysis and muscle contraction results on a macroscopic
scale. If in the flashing ratchet models the particles are re-

garded as heads of actin molecules, the spatially asymmetric
interaction force as that between actin and myosin molecules
and the on-and-off turning of the asymmetric interaction
force as association and dissociation between actin and
myosin molecules with the use of energy of ATP hydrolysis,
the flashing ratchet models can be investigated as models for
acto-myosin motors. In actual muscle contraction, however,
the actin molecules do not work independently but move
correlatively with neighboring ones, therefore, it is natural to
take into account mutual elastic interaction among particles
in the ratchet models as more realistic ones for the
acto-myosin motors for muscle contraction. Some workers
including the present authors investigated the coupled ratchet
models as those for muscle contraction �7,9,10�.

All the studies referred above on Brownian motors have
been done in a one-dimensional space, that is, ratchet models
with the particles moving only in a one-dimensional direc-
tion are investigated. Recently several authors have investi-
gated characteristics of molecular motors in a two-
dimensional space �10,16–24�. Characteristic two-
dimensional motion of a ratchet particle was investigated in
Refs. �16–18� and rectification and negative mobility were
observed for a two-dimensional ratchet model in Ref. �19�.
Separation of particles with the use of two-dimensional
ratchetlike mechanism was also investigated in Ref. �20�. In
Refs. �22,23�, two-dimensional Brownian motion is investi-
gated under the influence of a two-dimensional ratchet po-
tential and the motion orthogonal to the applied force is ob-
served. Two-dimensional devices separating two kinds of
particles by ratchet mechanism are theoretically investigated
in Ref. �24�. We studied a coupled two-dimensional flashing
ratchet model and obtained preliminary results �10�.

The one-dimensional models are reasonable as those for
the molecular motors in muscle contraction because a fila-
ment moves on a line in muscle contraction. It is, however,
interesting to consider two-dimensional motion of Brownian
particles and investigate the dimensional effects on the dy-
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namical properties of the model from theoretical points of
view. Moreover, in order to explain the results of in vitro
biological experiments on two-dimensional motion of actin
filaments in motility assays �25–27�, we must devise two-
dimensional Brownian motor models. In this paper, there-
fore, we extend the elastically coupled ratchet model in a
one-dimensional space to that in a two-dimensional space in
order to apply it to the experiments.

The biological experiments are as follows �25–27�. A
cover glass is coated with myosin molecules, and actin fila-
ments are set on them. When ATP is added in this system and
an appropriate environmental condition is set, the actin fila-
ments start to move steadily in their own easily advancing
direction in the two-dimensional plane on the cover glass
because they interact with the myosin proteins with the use
of energy produced by ATP hydrolysis.

In order to construct a model to explain these experiments
mentioned above, we have to approximate two points for
myosin. First, for simplicity, the characteristic directions of
myosin molecules are neglected because the directions of the
molecules are distributed randomly in motility assays and in
average sense we can treat the molecules as nondirectional
ones for a first approximation, although myosin molecules
have their own directions to which actin filaments easily ad-
vance. Second, also for simplicity, myosin molecules are as-
sumed to be located at two-dimensional square lattice points,
and the stable force free points of the interaction force be-
tween myosin and actin molecules are set to be the lattice
points, although the configuration of the molecules is not
entirely periodic. Moreover, extending our coupled model
from the one-dimensional one to the two-dimensional one,
we must include two characteristics for actin filaments. One
is lateral elasticity of the interaction between neighboring
particles, which tends for particles to align straight. The
other is the characteristic direction, or easily advancing one,
of each particle �actin molecule�. In our model, each particle
has its own easily advancing direction, with which the spa-
tially asymmetric direction of the interaction force is made
coincident. The easily advancing direction of each particle is
determined to be the approximate tangential direction of the
chain, the particles coupled with springs, which corresponds
to an actin filament.

It is reported that actin filaments in motility assays ad-
vance zig-zag, swaying its body just like a snake. We repro-
duce such characteristic motion of the particles with com-
puter simulation of our model. Moreover, the motion of the
actin filaments shows some interesting aspects in the experi-
ments. Among them, in the present paper, we pay special
attention to two points. One is that the longer the actin fila-
ment becomes, the smaller the variance of the distribution of
the advancing direction becomes in the experiments �26�. We
try to reproduce qualitatively the distribution of the change
of their advancing direction in our model. The other is the
dependence of amplitude of velocity of filaments on density
of myosin molecules in motility assays. That is, with in-
crease of the density of myosin molecules, the amplitude of
the velocity increases and is saturated for high densities. We
investigate the dependence of the amplitude of the velocity
on the spatial period �lattice constant� of the stable force free
points of the spatially asymmetric interaction force, which is

considered to be inversely proportional to the density of
myosin molecules in our model because the higher the den-
sity of myosin becomes, the larger the number of the stable
force free points, which correspond to the position of the
myosin molecule, becomes in a unit area, that is, the shorter
the lattice constant of the stable force free points of the in-
teraction force between myosin and actin molecules be-
comes.

In Sec. II, we explain our two-dimensional Brownian mo-
tor model and our simulation results are discussed in Sec. III.
We summarize our conclusion in Sec. IV.

II. COUPLED TWO-DIMENSIONAL MODEL

In this paper, our model is described by dimensionless
quantities. We consider a chain consisting of N particles
which move in a two-dimensional space and are mutually
connected with linear elastic springs. The ith particle is de-
noted by Pi, whose position vector is represented as xi
= �xi ,yi��i=1, . . . ,N�. The particles experience elastic inter-
action force, spatially asymmetric interaction force, and ran-
dom force. The detailed explanations of the respective force
are given as follows.

A. Elastic interaction between particles

The particles are elastically coupled with the nearest
neighboring ones �see Fig. 1�. First, we consider the longitu-
dinal linear elastic interaction between the two nearest neigh-
boring particles, that is, the longitudinal elastic force exerted
on the ith particle Pi, by the neighboring �i+1�th particle
Pi+1, fi,i+1

LO , is given by

fi,i+1
LO = k���xi − xi+1�2 − a�

xi+1 − xi

��xi − xi+1�2
, �1�

where k denotes the longitudinal spring constant and a the
natural length of the springs. Since the ith particle Pi inter-
acts elastically with two neighboring particles, �i−1�th and
�i+1�th particles, Pi−1 and Pi+1, the interaction force exerted
on the ith particle, Pi, for this longitudinal elasticity, Fi

LO, is
Fi

LO= fi,i+1
LO − fi−1,i

LO �for i�1,N�. Because we employ free
boundary conditions in our model, the longitudinal elastic
force for the boundary particles, P1 and PN, are given by
F1

LO= f1,2
LO and FN

LO=−fN−1,N
LO , respectively.

Next, we introduce the lateral elasticity exerted on the
particles. Without this, particles move easily even in the nor-
mal direction of the chain, consisting of the particles coupled
with the springs, are apt to be mutually crossed and the chain
tends to be heavily folded, which is not favorable character-
istics in reproduction of the experimental results as a model
for the in vitro biological experiments in motility assays,
where the filament consisting of actin moves steadily in a
certain direction on a two-dimensional plane. To avoid the
folding, we introduce elasticity not only in the longitudinal
direction already taken into account but also in the lateral
direction of our model, which makes the particles tend to

align straight �Fig. 1�. If we define di as HiPi
� , where Hi is the

foot of the perpendicular from Pi to the line segment Pi−1Pi+1,
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we set the lateral elastic force exerted on the ith particle,
Fi

LA, to be equal to −Adi, where A��0� stands for the lateral
elastic constant, and the minus sign of Fi

LA is chosen as the
three particles, Pi−1, Pi, and Pi+1, tend to align straight by the
lateral elasticity. The two boundary particles �P1 and PN� do
not experience such lateral elastic force because of the free
boundary conditions.

B. Spatially asymmetric interaction force with flashing

Each particle also experiences the spatially asymmetric
interaction force on and off, or occasionally. The flashing
�occasional� interaction force exerted on the ith particle, Fi

A,
is given by hi�t�fi

A�xi� �i=1,2 , . . . ,N�, where hi�t� represents
on-and-off properties of the force and fi

A�xi� denotes spatially
asymmetric part of Fi

A.
First, hi�t� is defined as a colored random modulation that

rules the time dependent change expected 0 or 1. We choose
hi�t� as follows. Mutually independent Ornstein-Uhlenbeck
process Zi�t� �for i=1, . . . ,N�, that is,

�Zi�t�Zj�s�� = �ij
D�

�
e−�t−s�/�, �2�

is considered where the Kronecker’s delta �ij =0 for i� j and
1 for i= j, �Zi�t��=0, D�=0.4, �¯� means ensemble average

and � the correlation time. If Zi�t� is less than 0 then hi�t� is
defined to be 0, and if Zi�t� is more than or equal to 0 then
hi�t� is set to be 1. Therefore, the particle Pi does not expe-
rience the asymmetric force if hi�t� is equal to 0 and does
experience the asymmetric force if hi�t� is equal to 1. Since
the correlation time of hi�t� is �, Fi

A, the asymmetric interac-
tion force exerted on the particle, changes stochastically be-
tween 0 and fi

A�xi� with the correlation time �, that is, hi�t�
causes the flashing. Since only the sign of Zi�t� is taken into
account, the value of D� is irrelevant to the results.

Next, we explain fi
A�xi�, the spatially asymmetric part,

whose asymmetric direction is set to be the easily advancing
direction of the ith particle Pi. The direction of each particle
is determined to be roughly the tangential direction of the
chain consisting of the particles �see Fig. 1�. That is, the
easily advancing direction of the ith particle is decided to be
that of the line segment, Pi−1Pi+1 which links the two neigh-
boring particles, the �i−1�th and the �i+1�th particles. From
two opposite directions of this line segment, we choose the
direction from the �i−1�th particle to the �i+1�th particle as
the direction of the particle. Since the two particles, P1 and
PN, located at the end of the chain have only a single neigh-
boring particle, we define their easily advancing directions as
those of the lines which link themselves to the neighboring

one, that is, P1P2
� for the first particle and PN−1PN

� for the last
Nth particle. By this rule, we can assign a “natural” direction
to each particle, since roughly speaking, the direction of each
particle defined above is approximately the direction of the
tangential line of the chain, which, as a model for acto-
myosin molecular motors, is thought to be approximately
coincident with the asymmetric direction in which the actin
filament moves easily.

The actual functional form of fi
A�xi� is determined as fol-

lows. We set the stable force free points of the asymmetric
interaction force to be the square lattice points, xmn
= �2bm ,2bn� �for m ,n=0, ±1, ±2, . . .�, where 2b means the
lattice constant of the stable force free points. First, we con-
sider the easiest case. That is, if the easily advancing direc-
tion of the ith particle is the positive direction of the x axis,
fi

0A�xi�= (f i,x
0A�xi� , f i,y

0A�xi�) is chosen as the asymmetric part,
fi

A�xi�, where

f i,x
0A�xi� = − U	cos
��xi + x0�

b
� +

1

2
cos
2��xi + x0�

b
�� ,

�3�

f i,y
0A�xi� = − U sin
�yi

b
� , �4�

which is asymmetry in the direction of the x axis. U repre-
sents the amplitude and x0=−b /� cos−1�−1/2+�3/2�. In this
case, the stable force free points of Eqs. �3� and �4� are 
xmn�
and the easily advancing direction of Pi by ratchet mecha-
nism is the positive direction of the x axis. Since ordinarily
the direction of the ith particle Pi is not coincident with the x
axis, for determination of fi

A�xi�, the above force vector, Eqs.
�3� and �4�, should be rotated as the direction of asymmetry
is set to be the exact easily advancing direction of the ith

FIG. 1. Schematic illustration of our model. We introduce lon-
gitudinal and lateral elasticity. The lateral elastic force exerted on
the ith particle Pi �1� i�N� is −Adi, where A denotes the lateral

elastic constant and di=HiPi
� , where Hi is the foot of the perpen-

dicular from Pi to the line segment Pi−1Pi+1. The force is exerted in
the direction as the three particles, Pi−1, Pi, and Pi+1, align straight
and therefore folding of the chain consisting of the coupled particles
is avoided. The lateral elastic force is not exerted on the two bound-
ary particles, P1 and PN. Moreover, each particle has its own easily
advancing direction. The direction of each particle �represented by a
small arrow on each one� is defined as the average of the direction
of the neighboring two springs, in other words, the direction of the
line segment, Pi−1Pi+1, which links the neighboring two particles.
That is, we choose the direction from the �i−1�th particle Pi−1 to the
�i+1�th particle Pi+1 as the easily advancing direction of the ith
particle Pi.
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particle. For simplicity, we set the nearest stable force free
point from the particle, xi,0, that is, one of the lattice points

xmn�, where the amplitude of the asymmetric force is 0, as
the axes of the rotation of the asymmetric interaction force.
With the use of x̃i defined by

x̃i = xi,0 + 
 cos �i sin �i

− sin �i cos �i
��xi − xi,0� , �5�

where �i stands for the angle between the positive part of the
x axis and characteristic direction of the ith particle, fi

A�xi� is
given by

fi
A�xi� = 
cos �i − sin �i

sin �i cos �i
�fi

0A�x̃i� . �6�

In this case, although the stable force free points of fi
A is not

generally coincident with 
xmn� except for xi,0, we only use
its one-period region near xi,0. Therefore, it is no problem for
a first approximation.

Although we do not show the results in this paper, we
obtain qualitatively similar results when we set the axes of
the rotation for determining the asymmetric force to be the
position of the particle itself, which is not a reasonable
choice �10�. One may think that we should also consider the
direction of the myosin head as a model for experiments in
motility assays. As explained in Sec. I, we do not, however,
take it into account in our model for simplicity, because di-
rections of myosin molecules coated on a cover glass are
located randomly on it and there are no characteristic direc-
tions on the average sense.

C. Equations of motion

With the use of the force exerted on each particle ex-
plained above, the equations of motion for the Brownian
particles in our model are as follows �i=1, . . . ,N�:

�
dxi

dt
= Fi

LO + Fi
LA + Fi

A + Fi
R�t� , �7�

where we consider the overdamped case for a friction con-
stant �. Fi

R�t�= (	i�t� ,
i�t�) �for i=1, . . . ,N� is random force,
where 	i�t� and 
i�t� denote mutually independent white
noises of zero mean and correlations �	i�t�	 j�s��=2�D�ij��t
−s�, �
i�t�
 j�s��=2�D�ij��t−s�, and �	i�t�
 j�s��=0 �i , j
=1, . . . ,N�, where D stands for the temperature, ��t� the
Dirac’s delta function and �ij the Kronecker’s delta.

III. NUMERICAL SIMULATION

We numerically solve the equations of motion �7� by the
Euler-Maruyama difference scheme for time mesh �
=0.0001. It is confirmed in our simulation that the value of �
is sufficiently small. At the beginning of our simulations, the
ith particle is always located at �x ,y�= �i ,0�. In our simula-
tion, a, �, and � are �with nondimensional units� set to be
1.0, k to be 4.0, D to be 0.2, and b to be 2 except in Sec.
III C. a=1 and �=1 are chosen as the scales of length and
time are determined from them, and k=4 is chosen because

in the one-dimensional model the velocity has a maximum
for it. Thereby we usually change only three parameters in
our simulation, that is, A, U, and N. Only in Sec. III C, we
also change the value of b.

A. Motion of particles

For small N, the velocity of the chain increases as a func-
tion of N and is saturated approximately above N=60. In Fig.
2, for example, the x and y components of the center of mass
of particles are plotted as a function of time t for A=34, U
=1, and N=80. Since the values of the x component of the
center of mass are almost steadily increasing �the full line�
and the y component decreasing �the dashed line� in Fig. 2,
the chain consisting of the particles is advancing in a certain
direction except for the very early time of the simulation. For
other values of parameters, the particles also similarly move
steadily in a certain direction. This corresponds to the steady
motion of filaments in motility assays. The reason why the
advancing direction of the chain is not always coincident
with the initial easily advancing direction �the x axis� is that
once the tangential direction of the chain becomes inclined to
the x axis, the chain moves to its tangential direction and the
moving direction of the chain is changed for each simulation
result. In Fig. 2, the chain moves to the direction between the
positive part of the x axis and negative part of the y axis.

In Fig. 3, three snapshots of the particles for three succes-
sive time points are depicted for an example. From this fig-
ure, we see that although the particles are moving zig-zag,
they steadily advance in a certain direction, which is ap-
proximately coincident with the tangential direction of the
chain and that we can reproduce the observed results of the
experiments in motility assays qualitatively �26�. For other
values of parameters, the similar results are obtained, al-
though, for small A, the chain is apt to be folded mutually
and the velocity is reduced by it.

FIG. 2. The center of mass of particles is depicted as a function
of time t, where the full line represents the x component and dashed
line the y component of the center of mass. From this figure, we
know that the particles almost steadily move in a certain direction
except for the very early time of the simulation. We set A=34, U
=1, and N=80.
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B. Distribution of advancing direction of particles

We investigate the distribution of the angle between the
velocity vectors of the center of mass of the coupled particles
at two different time points. This angle ��0° ���180°� is
defined as follows:

� = arccos�v�t + T� · v�t�
v�t + T�v�t�

� , �8�

where T denotes the time difference between the two time
points when the velocity is evaluated. In our simulation, T is
set to be 200. We calculate the velocity vector of the coupled
particles at time s, v�s�, by measuring the difference of the
coordinates of the center of mass of the particles, X�s�,

X�s� =
1

N
�
i=1

N

xi�s� , �9�

between s and s+T1 and v�s� is defined as

v�s� =
X�s + T1� − X�s�

T1
, �10�

and its amplitude is denoted by v�s�. In our simulation, T1 is
set to be equal to T. The results are similar to those for T1
=100.

Figure 4 shows the distribution of � for N=20 and 80,
respectively. For N=20, the distribution of angle spreads in a
wide region of the angle. For N=80 case, the distribution
concentrates near �=0 and the wide changes of the advanc-
ing direction of the particles become rare events. The longer
the chain becomes, the more clearly the distribution concen-
trates near the angle 0. That is, for the system with a large
number of the particles, they move steadily in the almost
same direction. Those results are coincident with those of the
biological experiments quite well �26�. This fact is another
explanation for the results of the N dependence of the veloc-
ity of the chain stated in Sec. III A, that is, the velocity of the
chain becomes large with increase of N and is saturated for
sufficiently large N.

C. The dependence of the amplitude of the velocity of
particles on the lattice constant of the stable force free points

of the asymmetric interaction force

Finally we investigate the amplitude of the velocity as a
function of the spatial period �lattice constant� of the stable

force free points of the spatially asymmetric interaction
force, 2b. From Fig. 5, we see that the amplitude of the
velocity of the center of mass increases as a function of the
inverse of the period �lattice constant� of the asymmetric
force, 1 /2b, and is saturated for large 1/2b. The amplitude
of the velocity for A=34 is larger than that for A=14. As a
function of the lateral elastic constant, A, the amplitude of
the velocity also increases and is saturated approximately
above 25. Biological experiments in motility assays show the
relation between the density of myosin molecules spread all
over a cover glass and the amplitude of the velocity of actin
filaments interacting with the myosin molecules �27�. The
experimental results are as follows. If the density of myosin
molecules coated on the cover glass is increased, the ampli-
tude of the velocity of the actin filaments becomes larger in
some degree and is saturated for high densities. We investi-
gate this result by changing b of our model in our simulation.
As the spatial period �lattice constant� of the stable force free
points, 2b, becomes shorter, the larger number of the stable
points with the zero asymmetric interaction force, which cor-
respond to the positions of myosin molecules, is expected to
exist per a unit area. That is, the case of small b corresponds

FIG. 3. The dotted line represents a snapshot of the configura-
tion of particles for t=18 700, the dashed line that for t=20 000,
and the full line that for t=21 500, where we set A=34, U=3, and
N=80. This figure shows that the chain advances zig-zag and moves
steadily in the direction which coincides approximately with the
tangential one of the chain.

FIG. 4. The angle distribution of the advancing directions of
particles for A=14 and U=1. In the upper figure, the results for
N=20 and in the lower figure, those for N=80 are depicted. For
large N, the distribution concentrates near �=0.
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to the situation with high density of myosin molecules on the
cover glass in the biological experiments �27�. From these
assumptions, we succeed to reproduce qualitatively the ex-
perimental results. Regardless of the elasticity, k and A, of
the model, our results show the similar features to those in
the biological experiments, that is, increase and saturation of
the amplitude of the velocity as a function of 1/b, or the
density of myosin molecules.

Here, we consider the reason for the 1/b dependence �in-
crease and saturation� of the amplitude of the velocity. For
large b, the distance to a nearest stable force free point is too
large and the ratchet mechanism dose not work well because
in the time duration �, which is the average flashing time of
the asymmetric interaction force, the chain rarely moves to
the next stable force free point of the asymmetric force and
the amplitude of the velocity becomes small. Since, with the
decrement of b, the ratchet mechanism gradually comes to
work, the probability that the particle jumps to the next
stable force free point of the asymmetric interaction potential
in a flashing time increases and the amplitude of the velocity
also increases as a function of 1/b. For further decreasing of
b, however, the efficiency of the ratchet mechanism becomes
saturated because the particles almost always jump to the
next stable force free points in every flashing occasion and

the average jump distance in a flashing time is mainly lim-
ited in the average diffusion distance of the particles during
the flashing time. Therefore, for rather small b, the amplitude
of the velocity of the chain is saturated since the average
advancing distance of the particles in a flashing time depends
only on the diffusion distance during �, but not on b.

IV. CONCLUSION

In this paper, we extend the coupled Brownian motor
�ratchet model� from the one-dimensional one into the two-
dimensional one and compare the results with the biological
experiments.

In order to avoid folding effects of the chain, we introduce
not only the longitudinal elasticity but also the lateral elas-
ticity, which forces to align the particles in line. With the
lateral elasticity, we succeed to improve our model, that is,
steadily advancing motion of unfolded coupled particles is
realized. Moreover, we define the easily advancing direction
of each particle as the approximate tangential direction of the
coupled particles, that is, the direction parallel to the line
segment connecting between two neighboring particles and
realize the steady motion of the chain consisting of particles
in the approximate tangential direction of the chain.

We find some characteristic facts in our two-dimensional
extended model. First, we have found that when N is rela-
tively large, the distribution of the change of the advancing
direction within a certain time duration concentrates near 0,
and the coupled particles move steadily in a particular direc-
tion, the tangential one, as shown in Fig. 4. Next, we succeed
to reproduce qualitatively the experimental results on the de-
pendence �increase and saturation� of the amplitude of the
velocity of actin filaments on the density of myosin mol-
ecules from the dependence of the amplitude of the velocity
of the chain on 1/2b, the inverse of the spatial period �lattice
constant� of the stable force free points of the asymmetric
interaction force.

We have shown that our two-dimensional flashing ratchet
model shows quite different features from the one-
dimensional ones. Moreover, our improved or naturally ex-
tended coupled ratchet model may help to understand
mechanism of acto-myosin motors.

ACKNOWLEDGMENT

This work has been partially supported by a Grant-in-Aid
for Scientific Research from the Japan Society for the Pro-
motion of Science �No. 16560051�.

�1� R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics �Addison-Wesley, Reading, 1966�, Vol. I,
Chap. 46.

�2� R. D. Astumian, Science 276, 917 �1997� and references cited
therein.

�3� P. Reimann, Phys. Rep. 361, 57 �2002� and references cited
therein.

�4� R. D. Astumian and P. Hänggi, Phys. Today 55�11�, 33 �2002�
and references cited therein.

�5� P. Reimann and P. Hänggi, Appl. Phys. A: Mater. Sci. Process.
A75, 169 �2002� and references cited therein.

�6� R. D. Astumian, Philos. Trans. R. Soc. London, Ser. B 355,
511 �2000�.

�7� F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269

FIG. 5. The 1/b dependence of the amplitude of velocity of the
center of mass. We set U=1 and N=80. The open circles and full
line represent the results for A=14 and the solid circles and dotted
line those for A=34. The velocity increases with 1/b and is satu-
rated for large 1/b. Those results qualitatively reproduce the experi-
mental results for the dependence of the velocity on the density of
myosin molecules.

H. GOKO AND A. IGARASHI PHYSICAL REVIEW E 71, 061108 �2005�

061108-6



�1997� and references cited therein.
�8� Z. Csahók, F. Family, and T. Vicsek, Phys. Rev. E 55, 5179

�1997�.
�9� A. Igarashi, S. Tsukamoto, and H. Goko, Phys. Rev. E 64,

051908 �2001�.
�10� A. Igarashi, H. Goko, and S. Tsukamoto, Physica A 325, 62

�2003�.
�11� A. F. Huxley and R. M. Simmons, Nature �London� 233, 533

�1971�.
�12� H. E. Huxley, Science 164, 1356 �1969�.
�13� T. Duke, Philos. Trans. R. Soc. London, Ser. B 355, 529

�2000�.
�14� T. Yanagida, S. Esaki, A. Hikikoshi Iwane, Y. Inoue, A. Ish-

ijima, K. Kitamura, H. Tanaka, and M. Tokunaga, Philos.
Trans. R. Soc. London, Ser. B 355, 441 �2000�.

�15� L. Stryer, Biochemistry, 4th ed. �W. H. Freeman, New York,
1995�, Chap. 15.

�16� J. Bao and Y. Zhuo, Phys. Lett. A 239, 228 �1998�.
�17� C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E 68,

046102 �2003�; C. Reichhardt, C. J. Olson Reichhardt, and M.
B. Hastings, ibid. 69, 056115 �2004�.

�18� R. Guantes and S. Miret-Artés, Phys. Rev. E 67, 046212
�2003�.

�19� R. Eichhorn, P. Reimann, and P. Hänggi, Phys. Rev. Lett. 88,
190601 �2002�; R. Eichhorn, P. Reimann, and P. Hänggi, Phys.
Rev. E 66, 066132 �2002�.

�20� I. Derényi and R. D. Astumian, Phys. Rev. E 58, 7781 �1998�.
�21� C. Keller, F. Marquardt, and C. Bruder, Phys. Rev. E 65,

041927 �2002�.
�22� M. Kostur and L. Schimansky-Geier, Phys. Lett. A 265, 337

�2000�.
�23� M. Kostur, Int. J. Mod. Phys. C 13, 1157 �2002�.
�24� M. Bier, M. Kostur, I. Derényi, and R. D. Astumian, Phys.

Rev. E 61, 7184 �2000�.
�25� S. J. Kron and J. A. Spudich, Proc. Natl. Acad. Sci. U.S.A. 83,

6272 �1986�.
�26� Y. Shikata, A. Shikata, R. Shimo, H. Takada, C. Kato, M. Ito,

T. Oda, and K. Mihashi, Proc. Jpn. Acad., Ser. B: Phys. Biol.
Sci. 70, 117 �1994�.

�27� T. Q. P. Uyeda, S. J. Kron, and J. A. Spudich, J. Mol. Biol.
214, 699 �1990�.

ELASTICALLY COUPLED TWO-DIMENSIONAL… PHYSICAL REVIEW E 71, 061108 �2005�

061108-7


